Golang深入学习——map

在Go语言中,一个map就是一个哈希表的引用,哈希表是一种巧妙并且实用的数据结构。它是一个无序的key/value对的集合,其中所有的key都是不同的,然后通过给定的key可以在常数时间复杂度内检索、更新或删除对应的value。map类型可以写为map[K]V,其中K和V分别对应key和value。map中所有的key都有相同的类型,所有的value也有着相同的类型,但是key和value之间可以是不同的数据类型。其中K对应的key必须是支持==比较运算符的数据类型,所以map可以通过测试key是否相等来判断是否已经存在。对于V对应的value数据类型则没有任何的限制。

基本操作

创建

内置的make函数:

1
ages := make(map[string]int)

map字面值的语法:

1
2
3
4
ages := map[string]int{
"alice": 31,
"charlie": 34,
}

访问

通过key对应的下标语法访问:

1
2
ages["alice"] = 32
fmt.Println(ages["alice"])

即使这些元素不在map中也没有关系;如果一个查找失败将返回value类型对应的零值。

元素是否真的是在map之中:

1
2
3
4
age, ok := ages["bob"]
if !ok {
//do something
}

删除

使用内置的delete函数可以删除元素:

1
delete(ages, "alice")

遍历

想遍历map中全部的key/value对的话,可以使用range风格的for循环实现:

1
2
3
for name, age := range ages {
fmt.Printf("%s\t%d\n", name, age)
}

Map的迭代顺序是不确定的,并且不同的哈希函数实现可能导致不同的遍历顺序。在实践中,遍历的顺序是随机的,每一次遍历的顺序都不相同。这是故意的,每次都使用随机的遍历顺序可以强制要求程序不会依赖具体的哈希函数实现。

数据结构

存储查询

Golang采用的是哈希查找表,并且使用链表解决哈希冲突。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// A header for a Go map.
type hmap struct {
// 元素个数,调用 len(map) 时,直接返回此值
count int
flags uint8
// buckets 的对数 log_2
B uint8
// overflow 的 bucket 近似数
noverflow uint16
// 计算 key 的哈希的时候会传入哈希函数
hash0 uint32
// 指向 buckets 数组,大小为 2^B
// 如果元素个数为0,就为 nil
buckets unsafe.Pointer
// 扩容的时候,buckets 长度会是 oldbuckets 的两倍
oldbuckets unsafe.Pointer
// 指示扩容进度,小于此地址的 buckets 迁移完成
nevacuate uintptr
extra *mapextra // optional fields
}

说明一下,B 是 buckets 数组的长度的对数,也就是说 buckets 数组的长度就是 2^B。bucket 里面存储了 key 和 value。buckets 是一个指针,最终它指向的是一个结构体:

1
2
3
type bmap struct {
tophash [bucketCnt]uint8
}

bmap 就是我们常说的“桶”,桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

每个 bucket 设计成最多只能放 8 个 key-value 对,如果有第 9 个 key-value 落入当前的 bucket,那就需要再构建一个 bucket ,通过 overflow 指针连接起来。

key 经过哈希计算后得到哈希值,共 64 个 bit 位(64位机,32位机就不讨论了,现在主流都是64位机),计算它到底要落在哪个桶时,只会用到最后 B 个 bit 位。还记得前面提到过的 B 吗?如果 B = 5,那么桶的数量,也就是 buckets 数组的长度是 2^5 = 32。

buckets 编号就是桶编号,当两个不同的 key 落在同一个桶中,也就是发生了哈希冲突。冲突的解决手段是用链表法:在 bucket 中,从前往后找到第一个空位。这样,在查找某个 key 时,先找到对应的桶,再去遍历 bucket 中的 key。

循环遍历

map 在扩容后,会发生 key 的搬迁,原来落在同一个 bucket 中的 key,搬迁后,有些 key 就要远走高飞了(bucket 序号加上了 2^B)。而遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。搬迁后,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。
当然,如果我就一个 hard code 的 map,我也不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。的确是这样,但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

当然,Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个随机序号的 cell 开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

多说一句,“迭代 map 的结果是无序的”这个特性是从 go 1.0 开始加入的。

再明确一个问题:如果扩容后,B 增加了 1,意味着 buckets 总数是原来的 2 倍,原来 1 号的桶“裂变”到两个桶。

map 并不是一个线程安全的数据结构。同时读写一个 map 是未定义的行为,如果被检测到,会直接 panic。

一般而言,这可以通过读写锁来解决:sync.RWMutex。

读之前调用 RLock() 函数,读完之后调用 RUnlock() 函数解锁;写之前调用 Lock() 函数,写完之后,调用 Unlock() 解锁。

另外,sync.Map 是线程安全的 map,也可以使用。